Abstract

Dental enamel is currently of high informative value in studies concerning childhood origin and human mobility because the strontium isotope ratio in human dental enamel is indicative of geographical origin. However, many prehistoric burials involve cremation and although strontium retains its original biological isotopic composition, even when exposed to very high temperatures, intact dental enamel is rarely preserved in cremated or burned human remains. When preserved, fragments of dental enamel may be difficult to recognize and identify. Finding a substitute material for strontium isotope analysis of burned human remains, reflecting childhood values, is hence of high priority. This is the first study comparing strontium isotope ratios from cremated and non-cremated petrous portions with enamel as indicator for childhood origin. We show how strontium isotope ratios in the otic capsule of the petrous portion of the inner ear are highly correlated with strontium isotope ratios in dental enamel from the same individual, whether inhumed or cremated. This implies that strontium isotope ratios in the petrous bone, which practically always survives cremation, are indicative of childhood origin for human skeletal remains. Hence, the petrous bone is ideal as a substitute material for strontium isotope analysis of burned human remains.

Highlights

  • Due to its high content of hydroxyapatite crystals [1] and absence of collagen, dental enamel has been of high informative value in studies concerning childhood origin and human mobility [2,3,4,5,6,7]

  • The material used in the intra-skeletal comparative study of unburnt human remains consisted of bone tissue from the otic capsule of the petrous portion of the skull, and dental enamel from premolars sampled from 9 individuals, all adults, both males and females with ages ranging from approximately 17 years to older seniles

  • The material used for testing the results on cremated human remains consisted of dental enamel from one burned 2nd molar and a burned petrous portion sampled from an adult male individual, buried in an urn grave at the site Rishøj near Viborg, Jutland, Denmark (K442/RH U2; Table 1)

Read more

Summary

Introduction

Due to its high content of hydroxyapatite crystals [1] and absence of collagen, dental enamel has been of high informative value in studies concerning childhood origin and human mobility [2,3,4,5,6,7]. The petrous portion is extremely robust and retains its morphology even after cremation or other intensive heat exposure, being one of the last bones of the body to burn [10,11] (Fig. 1). Its fetal structure and chemistry are embedded in an unchanged primary form and do not remodel after the age of 2 [13,14,15] This means that the Sr isotope ratios of the otic capsule may contain an archive of individual life history over the time of development (i.e. reflecting the diet of the mother during fetal stage and diet during the first 2 years of life) [16]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.