Abstract

In the Late Permian Zechstein Sea of Central Europe, up to 2000 m of evaporitic rocks were deposited in at least four consecutive cycles. The age of these evaporitic rocks could not yet be precisely determined, because they are virtually fossil-free and do not contain radiometrically datable volcanic layers. A chemostratigraphic age of the succession can be determined by comparing 87Sr/86Sr ratios of marine gypsum and anhydrite to the worldwide marine strontium evolution curve. Unfortunately, published 87Sr/86Sr data of the Zechstein succession are characterized by frequent outliers towards higher ratios, making an age assignment challenging. The scatter in 87Sr/86Sr ratios might be induced by different processes like the contribution of meteoric water to the brine, in-situ Rb decay, or post-depositional hydrothermal or diagenetic overprint. Here, we present a dataset of 26 new gypsum and anhydrite 87Sr/86Sr ratios from drill cores situated at “Alter Stolberg” in the northernmost Thuringian Basin. Evaporites of the Werra-, Staßfurt-, and Leine cycles were sampled. The close proximity of the drillings allows a very accurate assignment of the stratigraphic position of each sample, so that trends and outliers in 87Sr/86Sr ratios can easily be recognized. While the entire Werra Formation obviously revealed non-marine 87Sr/86Sr ratios, the lowermost 87Sr/86Sr ratios in the Staßfurt and Leine Formations can be assumed to represent marine ratios and allow estimating a chemostratigraphic age of 257‒254 Ma. The combination of the 87Sr/86Sr data with the mineral composition of the samples suggests a contribution of meteoric water, probably river water, to the Zechstein Sea as the main reason for the observed increase in 87Sr/86Sr ratios. Additional in-situ Rb decay, related to the riverine input of clay minerals, cannot be excluded. Modelling the amounts of sea water and meteoric water in the brine indicates that 83‒99% of meteoric water would be necessary to explain the highest 87Sr/86Sr ratios observed in the Werra Formation.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call