Abstract

IntroductionEF-hand Ca2+-binding proteins such as S100 protein family members are recognized by the receptor for advanced glycation end-products (RAGE) and are involved in the pathogenesis of asthma/allergic airway inflammation (AAI). Venestatin, an EF-hand Ca2+-binding protein, which is secreted by the parasitic helminth Strongyloides venezuelensis, binds with RAGE and suppresses RAGE-mediated inflammatory responses after parasite invasion. In this study, we evaluated the effect of venestatin on pathogenesis in a house dust mite (HDM) murine model of asthma/AAI. MethodsMice were intranasally treated with HDM, HDM with recombinant venestatin, or HDM with synthetic peptides, which were designed based on the EF-hand Ca2+-binding domain of venestatin. Pro-inflammatory responses in the lungs of mice were assessed. ResultsHDM treatment induced inflammatory cell infiltration, phosphorylation of the mitogen-activated protein kinase and inhibitor κB, and production of the cytokines tumor necrosis factor-α and interleukin-5 in the lungs. Co-administration of recombinant venestatin with HDM suppressed these pro-inflammatory responses. Treatment with synthetic peptides reduced inflammatory cell infiltration in a RAGE-dependent manner. ConclusionThe EF-hand domain of venestatin may have potential therapeutic benefits in asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call