Abstract

Abstract Despite impressive advances in the synthesis of perovskite quantum dots (PQDs), the ability to craft PQDs of the same dimension yet different architectures (e.g., solid vs. hollow) remains a grand challenge. Moreover, precise control over the architectures and assemblies of PQDs renders new optical and optoelectronic properties. Herein, we report on a robust amphiphilic star-like block copolymer nanoreactor strategy to rapidly create monodisperse solid and hollow PQDs of the same external diameter in-situ. The dimension of PQDs can be readily regulated by utilizing star-like copolymers. Compared to solid PQDs, as the inner diameter of hollow PQDs increases, their photoluminescence progressively blue-shifts. Moreover, stripe patterns of PQDs can be conveniently formed via meniscus-assisted self-assembly (MASA) and subsequently anion-exchanged to yield multi-colored stripes with a heterostructured transition zone. Conceptually, an array of PQDs including all inorganic lead-free and organic-inorganic PQDs, can be easily accessed for applications in lasers, LEDs, and solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call