Abstract
In this paper, a class of modules which are proper strong concept of weakly supplement extending modules will be introduced and studied. We call a module M is strongly weakly supplement extending, if each submodule of M is essential in fully invariant weakly supplement submodule in M. Many characterizations of strongly weakly supplement extending modules are obtained. We show that M is strongly weakly supplement extending module if and only if every closed submodule of M is fully invariant weakly supplement submodule in M. Also we study the relation among this concept and other known concepts of modules. Moreover, we give some conditions that of strongly weakly supplement extending modules is closed under direct sum property is strongly weakly supplement extending.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.