Abstract

The possibility of tuning the vibrational properties and the thermal conductivity of layered van der Waals materials either chemically or mechanically paves the way to significant advances in nanoscale heat management. Using first-principles calculations we investigate the modulation of heat transport in MoS2 by lithium intercalation and cross-plane strain. We find that both the in-plane and cross-plane thermal conductivity (, ) of MoS2 are extremely sensitive to both strain and electrochemical intercalation. Combining lithium intercalation and strain, the in-plane and cross-plane thermal conductivity can be tuned over one and two orders of magnitude, respectively. Furthermore, since and respond in different ways to intercalation and strain, the thermal conductivity anisotropy can be modulated by two orders of magnitude. The underlying mechanisms for such large tunability of the anisotropic thermal conductivity of MoS2 are explored by computing and analyzing the dispersion relations, group velocities, relaxation times and mean free paths of phonons. Since both intercalation and strain can be applied reversibly, their stark effect on thermal conductivity can be exploited to design novel phononic devices, as well as for thermal management in MoS2-based electronic and optoelectronic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.