Abstract
We consider stratifying ideals of finite dimensional algebras in relation with Morita contexts. A Morita context is an algebra built on a data consisting of two algebras, two bimodules and two morphisms. For a strongly stratifying Morita context - or equivalently for a strongly stratifying ideal - we show that Han's conjecture holds if and only if it holds for the diagonal subalgebra. The main tool is the Jacobi-Zariski long exact sequence. One of the main consequences is that Han's conjecture holds for an algebra admitting a strongly (co-)stratifying chain whose steps verify Han's conjecture.If Han's conjecture is true for local algebras and an algebra Λ admits a primitive strongly (co-)stratifying chain, then Han's conjecture holds for Λ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.