Abstract
In this paper we consider the class of mathematical programs with complementarity constraints (MPCC). Under an appropriate constraint qualification of Mangasarian–Fromovitz type we present a topological and an equivalent algebraic characterization of a strongly stable C-stationary point for MPCC. Strong stability refers to the local uniqueness, existence and continuous dependence of a solution for each sufficiently small perturbed problem where perturbations up to second order are allowed. This concept of strong stability was originally introduced by Kojima for standard nonlinear optimization; here, its generalization to MPCC demands a sophisticated technique which takes the disjunctive properties of the solution set of MPCC into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.