Abstract

Ethers are promising electrolytes for lithium (Li) metal batteries (LMBs) because of their unique stability with Li metal. Although intensive research on designing anion-enriched electrolyte solvation structures has greatly improved their electrochemical stabilities, ether electrolytes are approaching an anodic bottleneck. Herein, we reveal the strong correlation between electrolyte solvation structure and oxidation stability. In contrast to previous designs of weakly solvating solvents for enhanced anion reactivities, the triglyme (G3)-based electrolyte with the largest Li+ solvation energy among different linear ethers demonstrates greatly improved stability on Ni-rich cathodes under an ultrahigh voltage of 4.7 V (93% capacity retention after 100 cycles). Ether electrolytes with a stronger Li+ solvating ability could greatly suppress deleterious oxidation side reactions by decreasing the lifetime of free labile ether molecules. This study provides critical insights into the dynamics of the solvation structure and its significant influence on the interfacial stability for future development of high-efficiency electrolytes for high-energy-density LMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.