Abstract

In this paper, we accomplish two objectives. Firstly, we extend and improve some results in the theory of (semi-)strongly self-absorbing C⁎-dynamical systems, which was introduced and studied in previous work. In particular, this concerns the theory when restricted to the case where all the semi-strongly self-absorbing actions are assumed to be unitarily regular, which is a mild technical condition. The central result in the first part is a strengthened version of the equivariant McDuff-type theorem, where equivariant tensorial absorption can be achieved with respect to so-called very strong cocycle conjugacy.Secondly, we establish completely new results within the theory. This mainly concerns how equivariantly Z-stable absorption can be reduced to equivariantly UHF-stable absorption with respect to a given semi-strongly self-absorbing action. Combining these abstract results with known uniqueness theorems due to Matui and Izumi–Matui, we obtain the following main result. If G is a torsion-free abelian group and D is one of the known strongly self-absorbing C⁎-algebras, then strongly outer G-actions on D are unique up to (very strong) cocycle conjugacy. This is new even for Z3-actions on the Jiang–Su algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.