Abstract
Certificateless Public Key Cryptography (CLPKC) enjoys the advantage of ID-based public key cryptography without suffering from the key escrow problem. In 2005, Baek et al. proposed the first certificateless encryption (CLPKE) scheme that does not depend on pairing. Although it provides high efficiency, one drawback of their scheme is that the security proof only holds for a weaker security model in which the Type I adversary is not allowed to replace the public key associated with the challenge identity. In this paper, we eliminate this limitation and construct a strongly secure CLPKE scheme without pairing. We prove that the proposed scheme is secure against adaptive chosen-ciphertext attack in the random oracle model, provided that the Computational Diffie-Hellman problem is intractable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.