Abstract

Abstract For a class 𝓜 of monomorphisms of a category, mathematicians usually use different types of essentiality. Essentiality is an important notion closely related to injectivity. Banaschewski defines and gives sufficient conditions on a category 𝓐 and a subclass 𝓜 of its monomorphisms under which 𝓜-injectivity well-behaves with respect to the notions such as 𝓜-absolute retract and 𝓜-essentialness. In this paper, 𝓐 is taken to be the category of acts over a semigroup S and 𝓜 sd to be the class of strongly s-dense monomorphisms. We study essentiality with respect to strongly s-dense monomorphisms of acts. Depending on a class 𝓜 of morphisms of a category 𝓐, In some literatures, three different types of essentialness are considered. Each has its own benefits in regards with the behavior of 𝓜-injectivity. We will show that these three different definitions of essentiality with respect to the class of strongly s-dense monomorphisms are equivalent. Also, the existence and the explicit description of a strongly s-dense injective hull for any given act which is equivalent to the maximal such essential extension and minimal strongly s-dense injective extension with respect to strongly s-dense monomorphism is investigated. At last we conclude that strongly s-dense injectivity well behaves in the category Act-S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.