Abstract
In this chapter we return to the theme of combinatorial regularity with the study of strongly regular graphs. In addition to being regular, a strongly regular graph has the property that the number of common neighbours of two distinct vertices depends only on whether they are adjacent or nonadjacent. A connected strongly regular graph with connected complement is just a distance-regular graph of diameter two. Any vertex-transitive graph with a rank-three automorphism group is strongly regular, and we have already met several such graphs, including the Petersen graph, the Hoffman-Singleton graph, and the symplectic graphs of Section 8.11.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.