Abstract

Beauville surfaces are a class of complex surfaces defined by letting a finite group G act on a product of Riemann surfaces. These surfaces possess many attractive geometric properties several of which are dictated by properties of the group G. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the groups that may be used to define them. En route we discuss several open problems, questions and conjectures and in places make some progress made on addressing these.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.