Abstract

In this paper those graphs are studied for which a so-called strong ordering of the vertex set exists. This class of graphs, called strongly orderable graphs, generalizes the strongly chordal graphs and the chordal bipartite graphs in a quite natural way. We consider two characteristic elimination orderings for strongly orderable graphs, one on the vertex set and the second on the edge set, and prove that these graphs can be recognized in O(| V|+| E|)| V| time. Moreover, a special strong ordering of a strongly orderable graph can be produced in the same time bound. We present variations of greedy algorithms that compute a minimum coloring, a maximum clique, a minimum clique partition and a maximum independent set of a strongly orderable graph in linear time if such a special strong ordering is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.