Abstract

Strongly nonlinear perturbation theory would seem to be an oxymoron, that is, a contradiction of terms. Nonetheless, we here describe perturbation methods for wave categories that are intrinsically nonlinear including solitons (solitary waves), bound states of solitons (bions) and spatially periodic traveling waves (cnoidal waves). Examples include the Kortweg-deVries and Benjamin-Ono equations with general power law nonlinearity and the Fifth Order KdV equation. The perturbation strategies include (ⅰ) the Gorshkov-Ostrovsky-Papko near-equal-amplitude soliton interaction theory (ⅱ) perturbation series in the Newton-homotopy parameter and (ⅲ) approximations for large values of the nonlinearity exponent. A long section places strongly nonlinear perturbation theory for waves in a larger context as a subset of unconventional perturbation expansions including phase transition theory in \begin{document}$ 4 - \epsilon $\end{document} dimensions, the \begin{document}$ \epsilon = 1/D $\end{document} expansion where \begin{document}$ D $\end{document} is the dimension in quantum chemistry, the renormalized quantum anharmonic oscillator, the Yakhot-Orszag expansion in the exponent of the energy spectrum in hydrodynamic turbulence, and the Newton homotopy expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call