Abstract

A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law relation between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk effective dielectric constant ${\mathrm{\ensuremath{\epsilon}}}_{\mathit{e}}$ to second order in the fluctuations of its local value. A simlar procedure for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear integral expressions in the rescaled coordinates and exact bounds for it are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.