Abstract

We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.