Abstract

Abstract In this paper, we prove that finite-dimensional topological flows without fixed points and having a countable number of periodic orbits, have the small flow boundary property. This enables us to answer positively a question of Bowen and Walters from 1972: Any expansive topological flow has a strongly isomorphic symbolic flow extension, that is, an extension by a suspension flow over a subshift. Previously Burguet had shown this is true if the flow is assumed to be $C^{2}$-smooth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.