Abstract

A topological Kondo insulator (TKI) is a strongly-correlated material, where hybridization between the conduction electrons and localized f-electrons gives rise to a crossover from a metallic behavior at high temperatures to a topologically non-trivial insulating state at low temperatures. The existing description of the TKIs is based on a slave-boson mean-field theory, which neglects dynamic fluctuation phenomena. Here, we go beyond the mean-field theory and investigate the role of Kondo fluctuations on the topological surface states. We derive an effective theory of the Dirac surface states coupled to fluctuations and show that the latter mediate strong repulsive interactions between surface excitations. We show that these effects renormalize the plasmon spectrum on the surface. We also argue that Kondo-mediated interactions may drive a magnetic instability of the surface spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.