Abstract

The present paper can be thought of as a continuation of the paper Introduction to sh Lie algebras for physicists by T. Lada and J. Stasheff (International Journal of Theoretical Physics Vol. 32, No. 7 (1993), 1087--1103, appeared also as preprint hep-th/9209099) which provided an exposition of the basic ingredients of the theory of strongly homotopy Lie algebras sufficient for the underpinnings of the physically relevant examples. We demonstrate the `strong homotopy' analog of the usual relation between Lie and associative algebras and investigate the universal enveloping algebra functor emerging as the left adjoint of the symmetrization functor. We show that the category of homotopy associative algebras carries a natural monoidal structure such that the universal enveloping algebra is a unital coassociative cocommutative coalgebra with respect to this monoidal structure. The last section is concerned with the relation between homotopy modules and weak homotopy maps. The present paper is complementary to what currently exists in the literature, both physical and mathematical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.