Abstract
Ferrimagnetic insulators promise low-power and high-speed spintronic applications, thanks to their insulating nature and fast dynamics near compensation points. In a ferrimagnetic insulator/heavy metal heterostructure, we investigate field- and current-induced magnetization switching at various temperatures and observe distinct magnetization switching behaviors owing to spin–orbit torque (SOT) and heating effect. We have realized SOT switching across the magnetization compensation temperature and discovered that the SOT switching is strongly heat-assisted: the temperature is always above the compensation temperature while the SOT switching happens in our case. Moreover, we show that the SOT efficiency is strongly magnetization-dependent by characterizing the current dependence of SOT efficiency and explaining the anomalous SOT switching back phenomena in the presence of a titled external field. Our results reveal the critical role of Joule heating on the dynamics of magnetic insulators and pave the way for the application of spintronic devices based on magnetic insulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.