Abstract

Limited sensitivity and sensing range are arguably the greatest challenges in microwave sensor design. Recent attempts to improve these properties have relied on metamaterial- (MTM-) inspired open-loop resonators (OLRs) coupled to transmission lines (TLs). Although the strongly resonant properties of the OLR sensitively reflect small changes in the environment through a shift in its resonance frequency, the resulting sensitivities remain ultimately limited by the level of coupling between the OLR and the TL. This work introduces a novel solution to this problem that employs negative-refractiveindex TL (NRI-TL) MTMs to substantially improve this coupling so as to fully exploit its resonant properties. A MTM-infused planar microwave sensor is designed for operation at 2.5 GHz, and is shown to exhibit a significant improvement in sensitivity and linearity. A rigorous signal-flow analysis (SFA) of the sensor is proposed and shown to provide a fully analytical description of all salient features of both the conventional and MTM-infused sensors. Full-wave simulations confirm the analytical predictions, and all data demonstrate excellent agreement with measurements of a fabricated prototype. The proposed device is shown to be especially useful in the characterization of commonly-available high-permittivity liquids as well as in sensitively distinguishing concentrations of ethanol/methanol in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.