Abstract
Ion conductors comprising noncentrosymmetric frameworks have emerged as new functional materials. However, strongly correlated polarity functionality and ion transport have not been achieved. Herein, we report a ferroelectric proton conductor, K2MnN(CN)4·H2O (1·H2O), exhibiting the strong correlation between its polar skeleton and conductive ions that generate anomalous ferroelectricity via the proton-bias phenomenon. The application of an electric field of ±1 kV/cm (0.1 Hz) on 1·H2O at 298 K produced the ferroelectricity (polarization = 1.5 × 104 μC/cm2), which was enhanced by the ferroelectric-skeleton-trapped conductive protons. Furthermore, the strong polarity-proton transport coupling of 1·H2O induced a proton-rectification-like directional ion-conductive behavior that could be adjusted by the magnitude and direction of DC electric fields. Moreover, 1·H2O exhibited reversible polarity switching between the polar 1·H2O and its dehydrated form, 1, with a centrosymmetric structure comprising an order-disorder-type transition of the nitrido-bridged chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.