Abstract

Flexoelectricity in thin films has emerged as an effective electromechanical response owing to appealing scaling law and universal existence. However, current studies show limited out-of-plane converse flexoelectric effect (CFE) of ultra-thin transition metal dichalcogenides (TMDs) when compared to their conventional in-plane piezoresponse. Here, we report converse flexoresponse of atomically thin TMDs such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) which exceeds their intrinsic in-plane piezoresponses. Our piezoresponse force microscopy (PFM) measurements revealed strongly enhanced CFE of the atomically thin MoS2 and WSe2 than their bulk counterpart (∼700% enhancement in MoS2, ∼400% enhancement in WSe2). We observed an anomalous reduction in converse flexoresponse in the monolayer structure attributed to a puckering deformation. By inducing a built-in in-plane tension to reduce puckering, we estimated the CFE of monolayer WSe2 to be 8.14 pm/V, the highest among the atomically thin TMDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.