Abstract

We show how existing models for the sedimentation of monodisperse flocculated suspensions and of polydisperse suspensions of rigid spheres differing in size can be combined to yield a new theory of the sedimentation processes of polydisperse suspensions forming compressible sediments ("sedimentation with compression"' or "sedimentation-consolidation process"). For N solid particle species, this theory reduces in one space dimension to an $N\times N$ coupled system of quasi-linear degenerate convection-diffusion equations. Analyses of the characteristic polynomials of the Jacobian of the convective flux vector and of the diffusion matrix show that this system is of strongly degenerate parabolic-hyperbolic type for arbitrary N and particle size distributions. Bounds for the eigenvalues of both matrices are derived. The mathematical model for N=3$ is illustrated by a numerical simulation obtained by the Kurganov-Tadmor central difference scheme for convection-diffusion problems. The numerical scheme exploits the derived bounds on the eigenvalues to keep the numerical diffusion to a minimum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.