Abstract
An [Formula: see text]-module [Formula: see text] is called strongly [Formula: see text] if [Formula: see text] is a [Formula: see text] (equivalently, direct projective) module for every positive integer [Formula: see text]. In this paper, we consider the class of quasi-projective [Formula: see text]-modules, the class of strongly [Formula: see text] [Formula: see text]-modules and the class of [Formula: see text]-modules. We first show that these classes are distinct, which gives a negative answer to the question raised by Li–Chen–Kourki. We also give structural characterizations of strongly [Formula: see text] modules for finitely generated modules over a principal ideal domain. In addition, we characterize some rings such as Artinian semisimple rings, hereditary rings, semihereditary rings and perfect rings in terms of strongly [Formula: see text] modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.