Abstract

Arguments are summarized, that neutral matter made of helium, carbon, etc., should form a quantum liquid at the above-atomic but below-nuclear densities for which the charged spin-0 nuclei can condense. The resulting substance has distinctive features, such as a mass gap in the bosonic sector and a gap-less spectrum of quasifermions, which determine its thermodynamic properties. I discuss an effective field theory description of this substance, and as an example, consider its application to calculation of a static potential between heavy charged impurities. The potential exhibits a long-range oscillatory behavior in which both the fermionic and bosonic low-energy degree of freedom contribute. Observational consequences of the condensate for cooling of helium-core white dwarf stars are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call