Abstract

We consider a system of trapped spinless bosons interacting with a repulsive potential and subject to rotation. In the limit of rapid rotation and small scattering length, we rigorously show that the ground state energy converges to that of a simplified model Hamiltonian with contact interaction projected onto the Lowest Landau Level. This effective Hamiltonian models the bosonic analogue of the Fractional Quantum Hall Effect (FQHE). For a fixed number of particles, we also prove convergence of states; in particular, in a certain regime we show convergence towards the bosonic Laughlin wavefunction. This is the first rigorous justification of the effective FQHE Hamiltonian for rapidly rotating Bose gases. We review previous results on this effective Hamiltonian and outline open problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.