Abstract

Group III-nitride materials have drawn a great deal of renewed interest due to their versatile characteristics as quantum emitters including room-temperature operation, widely tunable wavelengths from ultraviolet to infrared, and a high degree of linear polarization. However, most reported results for III-nitride-based quantum emitters show large inhomogeneous line width broadening in comparison to their lifetime-limited values, which is detrimental to achieving indistinguishability with high visibility. To overcome this, we propose an unprecedented InGaN quantum dot formation technique at the apex of GaN nanopyramid structures, which significantly suppresses inhomogeneous line width broadening. Using high-resolution transmission electron microscopy, a site-controlled InGaN quantum dot with small height (<2 nm) was estimated. No measurable screening effect or frequency jitter of the single-photon emission was observed, which leads to the narrow homogeneous emission line width (64 ± 8 μeV) beyond the spect...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call