Abstract

The stability of polynuclear anions composed of ScF3 building blocks was studied by using ab initio and density functional theory electronic structure methods and flexible basis sets. Thorough exploration of ground state potential energy surfaces of (Sc2F7)-, (Sc3F10)-, and (Sc4F13)- anions which may be viewed as comprising ScF3 fragments and the additional fluorine atom led to determining the isomeric structures thereof. It was found that the most stable isomers which are predicted to dominate at room temperature correspond to the compact structures enabling the formation of a large number of Sc-F-Sc bridging linkages rather than to the chain-like structures. The vertical electron detachment energies of the (ScnF3n+1)- anions were found to be very large (spanning the 10.85-12.29 eV range) and increasing with the increasing number of scandium atoms (n) and thus the ScF3 building blocks involved in the structure. Thermodynamic stability of (ScnF3n+1)- anions (i.e., their susceptibility to fragmentation) was also verified and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.