Abstract
Graphullerene is a novel two-dimensional carbon allotrope with unique optoelectronic properties. Despite significant experimental characterization and prior density functional theory calculations, unanswered questions remain as to the nature, energy, and intensity of the electronic and optical excitations. Here, we present first-principles calculations of the quasiparticle band structure, neutral excitations, and absorption spectra of monolayer graphullerene and bulk graphullerite, employing the GW-Bethe-Salpeter equation (GW-BSE) approach. We show that strongly bound excitons dominate the absorption spectrum of monolayer graphullerene with binding energies up to 0.8 eV, while graphullerite exhibits less pronounced excitonic effects. Our calculations also reveal a strong linear polarization anisotropy, reflecting the in-plane structural anisotropy from intermolecular coupling between neighboring C60 units. We further show that the presence of Mg atoms, crucial to the synthesis process, induces structural modifications and polarizability effects, resulting in a ∼1 eV quasiparticle gap renormalization and a reduction in the exciton binding energy to ∼0.6 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.