Abstract

Abstract We report distinctly double-peaked Hα and Hβ emission lines in the late-time, nebular-phase spectra (≳200 days) of the otherwise normal at early phases (≲100 days) type IIP supernova ASASSN-16at (SN 2016X). Such distinctly double-peaked nebular Balmer lines have never been observed for a type II SN. The nebular-phase Balmer emission is driven by the radioactive 56Co decay, so the observed line profile bifurcation suggests a strong bipolarity in the 56Ni distribution or in the line-forming region of the inner ejecta. The strongly bifurcated blueshifted and redshifted peaks are separated by ∼3 × 103 km s−1 and are roughly symmetrically positioned with respect to the host-galaxy rest frame, implying that the inner ejecta are composed of two almost-detached blobs. The red peak progressively weakens relative to the blue peak, and disappears in the 740 days spectrum. One possible reason for the line-ratio evolution is increasing differential extinction from continuous formation of dust within the envelope, which is also supported by the near-infrared flux excess that develops after ∼100 days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call