Abstract

Within the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic long flexible beams. Physically, the model was motivated by deformations of surface coatings consisting of aligned bar-like elements as in the case of hyperbolic metasurfaces. Using the least action variational principle, we derive the dynamic boundary conditions. The linearized boundary-value problem is also presented. In order to demonstrate the peculiarities of the problem, the dispersion relations for surface anti-plane waves are analysed. We have shown that the bending stiffness changes essentially the dispersion relation and conditions of anti-plane surface wave propagation. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.