Abstract

We present results from a combined experimental and numerical simulation study of the anisotropy of the expansion of a laser-produced plasma into vacuum. Plasma is generated by nanosecond Nd:YAG laser pulse impact (laser wavelength λ=1.064 μm) onto tin microdroplets. Simultaneous measurements of ion kinetic energy distributions at seven angles with respect to the direction of the laser beam reveal strong anisotropic emission characteristics, in close agreement with the predictions of two-dimensional radiation-hydrodynamic simulations. Angle-resolved ion spectral measurements are further shown to provide an accurate prediction of the plasma propulsion of the laser-impacted droplet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call