Abstract
High pH is a noxious stimulus to animals, and their ability to avoid dangerously alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. The nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. In contrast, C. elegans mutants with structurally, developmentally, and/or functionally abnormal sensory cilia fail to avoid high pH, suggesting that sensory neurons in the cilia participate in sensing. Genetic rescue of the mutants indicates that ASH polymodal sensory neurons play a vital role in the process. Consistently, specific laser ablation of ASH neurons made animals insensitive to high pH. Furthermore, avoidance assays of other mutants also indicated that transient receptor potential vanilloid type (TRPV) ion channels encoded by osm-9 and ocr-2 are involved in sensing. Indeed, genetic rescue of osm-9 mutants by specifically expressing OSM-9 in ASH showed that TRPV channels play an essential role in sensing of high pH. Ca2+ imaging in vivo also revealed that ASH neurons were activated by high pH stimulation, but ASH of osm-9 or ocr-2 mutants were not. These results demonstrate that in C. elegans, high pH is sensed by ASH nociceptors through opening of OSM-9/OCR-2 TRPV channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.