Abstract

Understanding the water-use strategy of human-planted species used in response to climate change is essential to optimize afforestation programs in dry regions. Since 2000, trees on the central Loess Plateau have experienced a shift from strengthening drought to weakening drought. In this study, we combined tree-ring δ13C and δ18O records from Pinus tabuliformis (syn. tabulaeformis) Carr. (a tree) and Sophora viciifolia Hance (a shrub) on the central Loess Plateau to investigate species-specific responses to rising atmospheric CO2 (Ca) and drought. We found summer relative humidity controlled the fractionation of tree-ring δ18O, but the magnitude of the climate influence on δ13C differed between the species. The intrinsic water-use efficiency (iWUE) trends of both species suggested a strongly active response to maintain constant intercellular CO2 concentrations as Ca rose. The tree-ring δ13C and δ18O of both species using first-difference data were significantly and positively correlated, with stronger relationships for the shrub. This indicated the dominant regulation of iWUE by stomatal conductance in both species, but with greater stomatal control for the shrub. Moreover, the higher mean iWUE value of S. viciifolia indicated a more conservative water-use strategy than P. tabuliformis. Based on our commonality analysis, the main driver of the increased iWUE was the joint effect of Ca and vapor-pressure deficit (25.51%) for the tree, while it was the joint effect of Ca and the self-calibrated Palmer drought severity index (39.13%) for the shrub. These results suggest S. viciifolia will be more drought-tolerant than P. tabuliformis and as Ca continually rises, we should focus more on the effects of soil drought than atmospheric drought on the water-use strategy of S. viciifolia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call