Abstract

Mutualistic interactions with arbuscular mycorrhizal fungi (AMF) greatly affect the outcome of plant-plant competition, especially for invasive plants competing against native plants. We examined the effects of AMF on the competition between invasive Asteraceae plants and the phylogenetically related native plants. We compared the performance of seven invasive Asteraceae plants from different genera with that of their phylogenetically related native counterparts in response to AMF in monocultures and mixed cultures. We investigated how interactions with AMF impact the competition between Asteraceae relatives. Total biomass increased with AMF colonization in both invasive and native plants. Arbuscular mycorrhizal fungi improved the competitiveness of invasive plants, but decreased that of native plants. Competition increased the shoot nitrogen, phosphorus and root myristic acid concentrations and relative expression of fatty acid transporter genes (RiFAT1 and RiFAT2) in AMF-colonized invasive plants, but decreased those in AMF-colonized native plants. Structural equation models indicated that the presence of AMF increased the uptake of phosphorus, but not nitrogen, by invasive plants, which probably provided more myristic acids to symbiotic AMF in return. These results suggest that invasive Asteraceae plants have greater mutualistic interactions with AMF than their phylogenetically related native counterparts, potentially contributing to invasion success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.