Abstract

This paper addresses the order- and rack-sequencing problem at a single picking station in the context of robotic mobile fulfillment systems, a warehouse technology typically applied in large distribution centers. Following the parts-to-picker concept, items are stored on movable racks that are lifted and transported by automated guided vehicles from the storage area to picking stations for order-processing. The order-picking process involves two linked decisions: How to sequence the processing of orders and how to sequence the rack visits to supply the picking station with the requested items. We present a novel mixed-integer linear programming formulation achieving stronger linear programming bounds than a previous formulation. Including preprocessing techniques it quickly solves instances of medium-size to proven optimality for the first time in literature. For large real-world instances, we provide a three-stage heuristic solution procedure suitable in a dynamic environment, while providing competitive solutions within a short run time. Computational experiments on a broad set of benchmark instances and a comparative study with approaches from literature verify our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call