Abstract

Developing a theoretical framework to access the quantum phases of itinerant bosons or fermions in two dimensions that exhibit singular structure along surfaces in momentum space but have no quasiparticle description remains a central challenge in the field of strongly correlated physics. In this paper we propose that distinctive signatures of such two-dimensional (2D) strongly correlated phases will be manifest in quasi-one-dimensional ``$N$-leg ladder'' systems. Characteristic of each parent 2D quantum liquid would be a precise pattern of one-dimensional (1D) gapless modes on the $N$-leg ladder. These signatures could be potentially exploited to approach the 2D phases from controlled numerical and analytical studies in quasi-one-dimension. As a first step we explore itinerant-boson models with a frustrating ring-exchange interaction on the two-leg ladder, searching for signatures of the recently proposed two-dimensional $d$-wave-correlated Bose liquid (DBL) phase. A combination of exact diagonalization, density-matrix renormalization-group, variational Monte Carlo, and bosonization analysis of a quasi-1D gauge theory provide compelling evidence for the existence of an unusual strong-coupling phase of bosons on the two-leg ladder, which can be understood as a descendant of the two-dimensional DBL. We suggest several generalizations to quantum spin and electron Hamiltonians on ladders, which could likewise reveal fingerprints of such 2D non-Fermi-liquid phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.