Abstract
Hybrid structures assembled by van der Waals (vdW) interactions greatly expand the conventional material platforms, as there is no constraint of lattice matching in the materials design. However, a general challenge lies in the controllable assembly of 1D-2D hybrids with strong-coupled interfaces, because the interaction area is very small and is easily disturbed by exotic molecules. Here, we report the direct construction of 1D carbon nanotube-2D MoS2 monolayer hybrids with strong interfacial coupling using a sequential chemical vapour deposition growth method. The strong mechanical and electronic couplings between the nanotubes and MoS2 are unambiguously illustrated from the Raman-mode frequency shift and ultrafast interfacial charge transfer (∼100 fs). The findings in this work will boost the mass fabrication of 1D-2D vdW hybrid materials with controllable interfacial geometry and coupling strength, and pave the way for their future applications in electronics, optoelectronics and photovoltaics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.