Abstract
Strong zero modes provide a paradigm for quantum many-body systems to encode local degrees of freedom that remain coherent far from the ground state. Example systems include Z_{n} chiral quantum clock models with strong zero modes related to Z_{n} parafermions. Here, we show how these models and their zero modes arise from geometric chirality in fermionic Mott insulators, focusing on n=3 where the Mott insulators are three-leg ladders. We link such ladders to Z_{3} chiral clock models by combining bosonization with general symmetry considerations. We also introduce a concrete lattice model which we show to map to the Z_{3} chiral clock model, perturbed by the Uimin-Lai-Sutherland Hamiltonian arising via superexchange. We demonstrate the presence of strong zero modes in this perturbed model by showing that correlators of clock operators at the edge remain close to their initial value for times exponentially long in the system size, even at infinite temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.