Abstract
Renewable and biodegradable natural polymeric materials are attractive candidates for replacing nonbiodegradable plastics. However, it is challenging to fabricate polysaccharide-based materials (such as cellulose and chitin) that can be used in humid or even watery environments due to their inferior stability against water. Here, a self-locking structure is constructed to develop a strong, water-resistant, and ionic conductive all-chitosan film without other additives. The densely packed self-locking structure introduces strong interactions between chitosan nanofibers, preventing the fibers from disentangling even in watery environments. The resulting film exhibits outstanding tensile strength of ∼144 MPa, superior wet strength of ∼54.3 MPa, and high ionic conductivity of 0.0012 S/cm at 10-4 M KCl, which are significantly higher than those of conventional polysaccharide-based materials and many commercially used plastics. Additionally, it also possesses outstanding flexibility, excellent thermal stability, good antimicrobial ability, and biodegradability, which make it a promising eco-friendly alternative to plastics for many potential applications, such as packaging bags, drinking straws, and ion regulation membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.