Abstract

Polymeric micelles coexist in solution with unassembled chains (unimers). We have investigated the influence of glass transition temperature (T g) (i.e., chain mobility) of the micelle core-forming blocks on micelle-unimer coexistence. We synthesized a series of seven PEG-b-P(nBA-ran-tBA) amphiphilic block copolymers (PEG = poly(ethylene glycol), nBA = n-butyl acrylate, tBA = tert-butyl acrylate) with similar molecular weights (12 kg/mol). Varying the nBA/tBA molar ratio enabled broad modulation of core block T g with no significant change in core hydrophobicity or micelle size. NMR diffusometry revealed increasing unimer populations from 0% to 54% of total polymer concentration upon decreasing core block T g from 25 to -46 °C. Additionally, unimer population at fixed polymer composition (and thus core T g) increased with temperature. This study demonstrates the strong influence of core-forming block mobility on polymer self-assembly, providing information toward designing drug delivery systems and suggesting the need for new dynamical theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call