Abstract

0–1 multilinear programming (MP) captures the essence of pattern generation in logical analysis of data (LAD). This paper utilizes graph theoretic analysis of data to discover useful neighborhood properties among data for data reduction and multi-term linearization of the common constraint of an MP pattern generation model in a small number of stronger valid inequalities. This means that, with a systematic way to more efficiently generating Boolean logical patterns, LAD can be used for more effective analysis of data in practice. Mathematical properties and the utility of the new valid inequalities are illustrated on small examples and demonstrated through extensive experiments on 12 real-life data mining datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.