Abstract

Organic peroxy radicals (ROO•) are key oxidants in a wide range of chemical systems such as living organisms, chemical synthesis and polymerization systems, combustion systems, the natural environment, and the Earth's atmosphere. Although surfaces are ubiquitous in all of these systems, the interactions of organic peroxy radicals with these surfaces have not been studied until today because of a lack of adequate detection techniques. In this work, the uptake and reaction of gas-phase organic peroxy radicals (CH3OO• and i-C3H7OO•) with solid surfaces was studied by monitoring each radical specifically and in real-time with mass spectrometry. Our results show that the uptake of organic peroxy radicals varies widely with the surface material. While their uptake by borosilicate glass and perfluoroalkoxy alkanes (PFA) was negligible, it was substantial with metals and even dominated over the gas-phase reactions with stainless steel and aluminum. The results also indicate that these uptakes are controlled by redox reactions at the surfaces for which the products were analyzed. Our results show that the reactions of organic peroxy radicals with metal surfaces have to be carefully considered in all the experimental investigations of these radicals as they could directly impact the kinetic and mechanistic knowledge derived from such studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call