Abstract

AbstractWe use earthquake‐based adjoint tomography to invert for three‐dimensional structure of the North Island, New Zealand, and the adjacent Hikurangi subduction zone. The study area, having a shallow depth to the plate interface below the North Island, offers a rare opportunity for imaging material properties at an active subduction zone using land‐based measurements. Starting from an initial model derived using ray tomography, we perform iterative model updates using spectral element and adjoint simulations to fit waveforms with periods ranging from 4–30 s. We perform 28 model updates using an L‐BFGS optimization algorithm, improving data fit and introducing P‐ and S‐wave velocity changes of up to ±30%. Resolution analysis using point spread functions show that our measurements are most sensitive to heterogeneities in the upper 30 km. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone. Lateral velocity structures in the upper 5 km correlate well with New Zealand geology. The inversion reveals increased along‐strike heterogeneity on the margin. In Cook Strait we observe a low‐velocity zone interpreted as deep sedimentary basins. In the central North Island, low‐velocity anomalies are linked to surface geology, and we relate velocity structures at depth to crustal magmatic activity below the Taupō Volcanic Zone. Our velocity model provides more accurate synthetic seismograms with respect to the initial model, better constrains small (50 km), shallow (15 km) and near‐offshore velocity structures, and improves our understanding of volcanic and tectonic structures related to the active Hikurangi subduction zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call