Abstract
Abstract When analyzing modern machine learning algorithms, we may need to handle kernel density estimation (KDE) with intricate kernels that are not designed by the user and might even be irregular and asymmetric. To handle this emerging challenge, we provide a strong uniform consistency result with the $L^\infty $ convergence rate for KDE on Riemannian manifolds with Riemann integrable kernels (in the ambient Euclidean space). We also provide an $L^1$ consistency result for kernel density estimation on Riemannian manifolds with Lebesgue integrable kernels. The isotropic kernels considered in this paper are different from the kernels in the Vapnik–Chervonenkis class that are frequently considered in statistics society. We illustrate the difference when we apply them to estimate the probability density function. Moreover, we elaborate the delicate difference when the kernel is designed on the intrinsic manifold and on the ambient Euclidian space, both might be encountered in practice. At last, we prove the necessary and sufficient condition for an isotropic kernel to be Riemann integrable on a submanifold in the Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.