Abstract

The boundary behavior of convolutions with Poisson kernel and with square root of the Poisson kernel is essentially different. The former has only a nontangential limit. The latter involves convergence over domains admitting the logarithmic order of tangency with the boundary (P. Sjögren, J.-O. Rönning). This result was generalized by the authors to spaces of homogeneous type. Here we prove the boundedness in L p, p > 1, of the corresponding maximal operator. Only a weak-type inequality was known before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.