Abstract

Femtosecond transient difference absorption (fs TA) measurements, together with a series of open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies, were performed on a 1,10-phenanthrolinyl iridium(III) complex bearing ligands containing a benzothiazolylfluorenyl motif. An analysis of decay data from the fs TA experiment yields a value of 1.24±0.26 ns for the singlet excited-state lifetime τ(S) of the complex. By fitting the Z scans to a five-level dynamic model incorporating the independently measured value of τ(S) and previously reported values of the complex's triplet quantum yield (0.13) and triplet excited-state lifetime (230 ns), we obtain values of 3.5×10(-17) cm(2) (singlet) and 5.0×10(-16) cm(2) (triplet) for the excited-state absorption cross-sections of the complex in toluene solution at 532 nm; the latter value represents one of the largest triplet excited-state absorption cross-sections ever reported at this wavelength. The ratio of the triplet excited-state cross-section to the ground-state absorption cross-section exceeds 3800.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call